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Outline
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Mid-IR Generation

• Traditionally, Mid-IR light is frequency shifted from a laser pump
• Diode-pumped solid-state laser converted in a nonlinear crystal

• Typically ZGP, PPLN, OPGaAs
• How can we use fiber with Mid-IR light

• We can use it to transport Mid-IR light over several meters
• Fluorides and chalcogenides for power distribution
• Advantages: only fibers which can transport MWIR light with low loss
• Disadvantages: multimode output spoils beam quality

• Not necessarily bad for most applications
• However, we can use traditional fiber as a pump source

• Take advantage of silica fiber technology
• Transport the pump to nonlinear converter

3
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What is Needed For Mid-IR Generation?

• Pump source
• Bright, single-mode laser

• Generally need M2 < 2
• High peak power pulses

• Generally several kW peak
• Polarized output

• For phase matching in nonlinear material
• Nonlinear material

• Phase-matched to the pump and wavelengths to be generated
• Conservation of energy and momentum

• Critically phase-matched vs QPM materials
• Conversion: methods: OPO, OPG, OPA

4
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Nonlinear Optical Crystals – What Is Needed
• Higher efficiency and output power in the 2-8μm spectral range

• Mid-IR crystals compatible with common pump lasers

• Better long-wavelength materials for CO2 doubling and 8-12μm generation

• Desirable material properties:

• High nonlinear coefficient
• Low absorption loss
• High laser damage threshold
• Low thermal lensing
• Low/no walk-off

• Non-critical phase matching
(NCPM)

• • •

idler
signal
pump

C-axis

Birefringence Crystals

QPM Semiconductors
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Common Nonlinear Materials for Mid-IR Conversion

• PPLN
• Mature material, QPM
• Limited transparency range

in MWIR
• ZGP

• High nonlinear coefficient
• Critically phase-matched

• OPGaAs
• QPM, high nonlinear coefficient
• Large transparency range
• Low absorption
• High thermal conductivity

OPGaAs
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Solid-state vs. Fiber Pump Lasers

• Solid-state lasers
• Q-switched
• Good beam quality – M2: 1.2-2.0
• Lower repetition rates, long pulse widths

• Trade-off between pulse width and PRF
• Generally high pulse energy with high peak power

• Fiber lasers
• Excellent beam quality – M2: 1.0-1.5
• Efficient, compact
• Minimal/no free-space optics
• Variable rep rates and short pulse widths 

• Low pulse energy with high (or low) peak power
• Wavelength flexibility
• Power scalable with beam quality

Larger pump spots 
to mitigate NLO 
crystal damage

Smaller pump spots 
for high peak 

intensities
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So Why Bother With Silica Fiber?

• It can efficiently generate high powers and transport pump light
• Transparent from near-IR (<800nm) up into mid-IR (2100nm)

• Gain length
• Distribute the gain (lower gain per unit length, longer length)
• Spread the heat load over long fiber length (surface area for heat removal)

• Frequency agility
• Glass has a very chaotic structure

• Broad absorption and emission features compared to crystals
• Efficient pump/signal overlap

• Let the waveguide do the work
• It is inexpensive (in large quantities)

• Leverage the telecom investments
• Splicing, diodes, components, etc.

• The light is entirely confined to the fiber
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For High Power Operation
• DPSS crystal-based technologies

• Thermal lensing in crystal
• Beam distortions at high powers
• Need significant waste heat removal

• This requires a major engineering
effort and increases size, weight, power

• Fiber
• Pump absorption is spread over a few meters

rather than a few centimeters
• Fiber core is close to the heat-sink

• Only a few hundred microns
• Architectures can be power scalable 

without significantly impacting beam quality
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Typical Fiber Dopants
• Erbium (Er)

• Low gain, but eyesafe emission at 1.55μm telecom wavelengths
• Can pump at 980nm or resonantly at 1470-1532nm

• Ytterbium (Yb)
• Very high gain, very efficient
• Emission from 1000-1150nm (typically used from 1035-1080nm)
• Can pump from 915nm-975nm

• Ytterbium-sensitized erbium (Er:Yb)
• High power emission at 1.55μm higher gain due to Yb ions
• Pumped from 915nm-975nm

• Thulium (Tm)
• 2-micron emission from 1850-2100nm
• Pumped at 795nm or 1550nm

• Thulium-Holmium (Tm:Ho)
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Fiber Lasers
• Just like a solid-state laser, but the fiber is the gain medium

• Instead of a crystal and mirrors, we have a fiber and gratings
• Diode pumps the fiber to excite the active ions
• Gratings provide feedback at a specific wavelength for oscillation
• Typically CW operation

• But they can be q-switched or modulated
• Have very closely spaced modes due to long cavity lengths

• Typically several meters

High Power, Multimode 
Fiber-Coupled Diode

Pump Delivery 
Fiber

HR Grating PR Grating

Doped Fiber
CW Laser 

Output
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Amplifier Operation

• Just like a solid-state amplifier (all about overlap and saturation)
• But you don’t have to mode-match the signal and the pump
• The waveguide does this for you

• Length is determined by the core/clad area overlap
• And thus, the pump/signal overlap

Gain CrystalPump Beam

Signal
Lots of Unused 

Pump

Doped Fiber

Signal

Pump

Pump is Absorbed 
by End of Fiber 
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Fiber Amplifiers

• When seeded, fibers make very efficient amplifiers
• Offer much more gain than crystal amplifiers

• Due to length of gain medium
• Fiber amplifier typically offer gains ranging from 5-20dB

• The ability to generate pulsed output from a fiber
• By seeding with a pulsed source (diode, microchip laser)

Single-mode, 
Fiber-coupled 
Seed Diode

Isolator

Preamplifier Power Amplifier

Single-mode 
LMA Fiber

Pump 
Coupler

Pump Diode

Isolator

LMA Fiber

Pump 
Coupler

Pump Diodes

Amplified 
Output
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Performance

• Very high efficiency
• Due to gain length and core/clad overlap (signal/pump overlap)
• All of the pump is used (and all the gain is in the core)

• CW operation
• Yb-doped CW fiber systems have demonstrated >75% optical efficiency
• Er-doped systems are ~30% efficient (low power)
• Er:Yb-doped are ~35% efficient (high power)
• Tm-doped fibers are approaching 60% efficiency

• Pulsed operation
• High peak-powers are achievable rather efficiently

• Slightly less efficient than CW, but still much better than DPSS systems
• Due to low duty cycles

• Nonlinear effects become a major issue
• This is where the engineering comes in



Date/reference/classification

Limitations of Fiber Systems



Unclassified
Approved For Public Release

16

Energy Scaling

• What are the limits?
• Fiber core size - high powers do not like to be confined to such a small area

• 10W average (10kHz, 10ns) in a 30um core = 14GW/cm2

• Self-focusing limit
• High intensities modulate the nonlinear refractive index in the core
• This can form a Kerr lens and focus the light until the fiber breaks
• The limit for silica fiber is ~4.5MW of peak power at 1064nm

• Does not depend on core size we have length on our side again
• Surface damage

• Occurs at the glass-air interface as the light exits the fiber
• Depends on the surface quality and the pulse width but a good rule of 

thumb is <4GW/cm2

• Bulk damage
• Depends on the peak power, pulse width, and core size (~600GW/cm2)

• Nonlinearities in the fiber
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Nonlinear Effects
• Fibers have one particular “limitation”

• Small cores yield very large optical intensities
• Consequently, the good things about fiber are also bad

• Small cores and long lengths may induce nonlinear effects
• What are these effects?

• Stimulated Raman Scattering (SRS)
• Stimulated Brillouin Scattering (SBS)

• Single frequencies
• Self-phase Modulation (SPM)

• Optical Kerr effect
• Nonlinear phase shift

• Four-wave Mixing (FWM)
• Χ(3) susceptibility

• Solutions?
• “Short” fiber lengths, large cores
• Novel fiber geometries



Unclassified
Approved For Public Release

18

Now for the Math...

• All effects are a function of fiber length, core size, and wavelength
• Shorter fibers, larger cores increase the nonlinear thresholds
• The longer the wavelength, the higher the threshold

• Example
• Pulsed Yb-doped fiber amplifier at 1064nm (10kHz PRF, 10ns pulses)

• Core diameter = 15um; fiber length = 5m; gR = 1x10-13 m/W
• PSRS=6.5kW average power of 650mW is above the SRS threshold
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Amplified Spontaneous Emission (ASE)

• The excited ions have to go somewhere
• If not extracted, the excited electrons decay and spontaneously emit
• Unfortunately, there is gain at the emission wavelengths

• So the spontaneous photons 
see gain and get amplified

• This reduces the amount of gain 
seen by the signal, thus 
reducing efficiency

• Solution
• Filter the out-of-band ASE
• Saturate the gain so the signal 

extracts most of the pump
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Background Losses in Silica

• Fibers have lowest loss in 1.55μm 
window (telecom)

• Relatively low loss in 1.0μm region
• Above 1.6μm, losses are getting higher
• Above 2.1μm, background loss is 

becoming significant (>0.1dB/m)
• For lasing, this means higher threshold for 

lasers
• Shorter fiber lengths would be required for 

efficient operation
• Higher propagation losses in passive fiber

• Limits propagation distances
• 10m transport = 20% power loss

20

Wavelength (μm)
G. Frith, et al., Photonics 

West (2008)
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So What are Silica Fibers Systems Good For?

• High average power, low pulse energy output
• With diffraction-limited performance
• Higher repetition rates (<50kHz to >1MHz)
• High efficiency far better than DPSS lasers
• Peak power output depends on pulse width and PRF

• Fibers make the perfect pump source for frequency conversion
• Excellent beam quality

• Determined by the fiber geometry
• Wavelength agility (not offered in crystal systems)

• Yb fiber offers more than 100nm of gain
• Tm offers more than 200nm

• Pulse flexibility 
• Pulse width and PRF variability 

• Manufacturability
• You can splice these fibers together and eliminate free-space transitions
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Considerations for Nonlinear Conversion
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What are Needed from Fibers for Conversion

• Need to match the pump laser with nonlinear material
• Gain region in fiber with the nonlinear material
• Yb with PPLN
• Er:Yb with PPLN
• Tm with ZGP, OPGaAs

• Need energy and peak power for conversion
• Nonlinear materials only care about peak intensity/energy
• These are not energy storage devices

• Conversion only occurs on a pulse-to-pulse basis
• This translates to either high peak power or high intensities

• By focusing tightly into nonlinear material 

23
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Ytterbium-Doped Fiber Systems

• Advantages:
• High efficiencies  (>70%)
• Low quantum defect

• Pumping from 915-976nm
• Lasing from 1040-1080nm

• Common wavelengths
• Primary Nonlinearities:

• SRS, SBS, SPM, FWM
• Challenges:

• Peak power scaling due to nonlinear effects
• How to get high peak power:

• Large fiber cores, short fiber lengths
• Novel fiber geometries

24
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Ytterbium Fiber Geometries
• Large Mode Area (LMA)

• Large core (15-30μm) with low NA (0.06-0.1)
• Up to 80μm has been reported (U. Michigan)
• Advantages:

• Coiling promotes single-moded operation
• HOMs get coupled into cladding
• Conventional splicing technology can be used

• Disadvantages:
• Coiling can artificially reduce mode size in the core
• Larger cores can support higher order modes

• Even with coiling
• Cannot scale to very large cores due to limited NA range

• Difficult to reduce NA below 0.06
• Splicing is difficult for cores above 25μm diameters

25

J.M. Fini, Opt. Exp. 14, 69 
(2006)

D. Kliner, et al., SPIE OE 
Magazine (2004)
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Ytterbium Fiber Geometries

• Photonic Crystal Fiber (PCF)
• Very large core (>40um) with low NA (<0.03)

• Air holes tailor the NA
• Advantages:

• “Endlessly” single-mode operation
• Significantly larger core diameters than LMA fibers

• Promotes power scaling with higher nonlinear thresholds
• Disadvantages:

• Coiling limitations 
• Low NA promotes significant bend-losses 

• For fundamental mode
• Requires >25cm bend radii

• Air holes are present around the core
• Cannot splice without collapsing air holes

• Need free-space transition
26

F. Di Teodoro and C. D. Brooks, 
ASSP (2006)

J. Limpert, et al., Opt. Express 14, 
(2006) 
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Ytterbium Fiber Geometries
• Chirally-Coupled Core (CCC)

• Large core with low-moderate NA
• Helical coupled core 

• HOM suppression
• Advantages:

• Higher order modes see loss due to CCC
• Significantly larger core diameters are achievable than LMA fibers

• Promotes power scaling with higher nonlinear thresholds
• Can use with conventional splicing technology

• Disadvantages:
• Relatively new technology
• Need to develop components with matching passive fibers
• Bend radii can be large (15cm for 35um core)

• To avoid distortion in the fiber core
• Results in larger packages

27

C. Liu et al., ASSP (2007)
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High Peak Power YDFA
• MOPA architecture

• Seeded by a microchip laser
• 10W average power, 9.6kHz PRF, 1ns PW 

• 1mJ pulse energy, 1MW peak power

28

F. Di Teodoro and C. D. 
Brooks., ASSP (2006)
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Erbium Fiber Systems
• Advantages:

• Eyesafe output in the 1.55um region
• Lasing from 1525-1575nm

• Leverage telecom technologies
• Primary issues:

• Low gain
• Doping is limited due to quenching

• Challenges:
• Absorption is low at 980nm

• Requiring long fiber lengths
• Diode brightness limitations 

• Resonant pumping at 1470nm adds 
promise to Er-only fibers

• But diodes are inefficient and not 
bright enough for high power
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Erbium-Ytterbium Fiber Systems

• Advantages:
• Eyesafe output in the 1.55um region

• Lasing from 1525-1575nm
• Pump with diodes used in Yb

• 915-975nm
• Primary issues:

• Energy transfer from Yb to Er 
• 1-micron ASE and parasitic lasing

• Challenges:
• Power scaling 

• NA limitations 
• Yb lasing
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Erbium-Ytterbium Fiber Geometries

• Pedestal Fiber
• Co-doping increases index in the fiber core
• A “pedestal” surrounding the core can reduce the NA in the core
• Advantages:

• Lower NA core compared to non-pedestal LMA designs
• NAs of 0.1 have been achieved

• Disadvantages:
• Additional glass material in the fiber

• Fusion splicing issues
• NA cannot be reduced indefinitely

• Limits power scaling with SM operation

31
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Pulsed Er:Yb Fiber Amplifier

• Pulsed MOPA
• Generating 10W average output power

• ~8ns pulses at 1545nm
• Converting to MWIR in PPLN

• 10mm long crystal
• 1.2W average MWIR power

32

F. Di Teodoro and S. Desmoulins, CLEO (2007)
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Thulium Fiber Systems

• Advantages:
• High efficiencies 

• Due to 2-for-1 cross-relaxation 
• Pumping at ~795nm

• Direct eyesafe output in the 2-micron region
• 1850-2100nm

• Primary nonlinearities
• FWM, SPM

• Challenges:
• Power scaling 

• Due to NA limitations
• Aluminum doping

33
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Thulium Fiber Geometries

• Tm fiber geometries
• LMA-pedestal

• To get high efficiencies in thulium
• Must get ions to cluster
• Dope core with aluminum ions

• Causes index/NA to increase
• Surrounding the core with an undoped pedestal

• Drops the NA of the core
• With respect to pedestal

• Disadvantages:
• Additional glass material in the fiber

• Fusion splicing issues (4 glasses in a PM fiber)
• NA cannot be reduced indefinitely

• Limits power scaling with SM operation

34
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TDFA Pumped Mid-IR ZGP OPO

Isolator Isolator

25/250 
TDFA

HR Input 
Coupler

SRO Output 
Coupler

ZGPHalf-wave 
plate

Mid-IRGain-switched 
Oscillator

Lens

25/400 
TDFA

Isolator

795nm 
Diode

795nm 
Diode

0

5

10

15

20

25

0 10 20 30 40 50 60

795nm Pump Power (W)

A
ve

ra
ge

 O
ut

pu
t P

ow
er

 (W
) 100kHz

70kHz

50kHz

D. Creeden, et al., Opt. Lett. 33, 315-317 (2008) 
D. Creeden, et al., SPIE Defense and Security  (2008) 



Unclassified
Approved For Public Release

36

TDFL Pumped Mid-IR OPGaAs OPO

• Q-switched Tm:Ho fiber laser
• Grating used to narrow output spectrum

• Pumping OPGaAs for MWIR generation
• 2.2W mid-IR output power

C. Kieleck, M. Eichhorn, et al., CLEO (2009)
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Summary

• Must tailor the fiber pump to the nonlinear material
• Nonlinear material will drive fiber dopant selection

• Must design fiber system around nonlinear effects
• For nonlinear conversion, we must generate peak power

• Without running into nonlinear effects in the fiber
• Need novel fiber geometries or clever architectures 

• To achieve high enough peak powers to convert

• We are currently at the limit of conventional technology
• Limited by components, doped fiber, free-space coupling
• Ideally, we need all-fiber solutions

37
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General Issues

• Nonlinear effects
• Need to trade-off nonlinear thresholds in the fiber with the peak-power 

requirements of the frequency converter

• Brightness of pump sources
• To keep gain lengths relatively short you need a high core/clad ratio

• Either means large core or small cladding

• Beam quality from LMA fibers
• LMA fibers cannot scale indefinitely
• Eventually higher order modes will prevail
• This leads to other fiber geometries (CCC, PCF)

• But we need components and architectures which mate with these new 
fibers

38
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General Issues
• Components

• Passive fibers to match active fibers
• Isolators, taps, pump combiners, diodes, etc.

• Fiber geometries
• LMA fibers have scaling issues

• The larger the core, the lower the NA
• Limits coiling, mode can get distorted by coiling (reducing mode area)

• Pedestal designs are difficult to splice to
• 3-4 different glass compositions in a single fiber

• Each with a slightly different melting point
• More research into other dopants

• Ytterbium is very common, but is the farthest away from the mid-IR
• Thulium and holmium are promising for mid-IR generation

• Offering high efficiency with wavelength advantages

39
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Path Forward

• More emphasis needs to be placed on component and fiber development
• Currently there are few commercial vendors of specialty fibers

• Especially for Thulium or Holmium-doped fibers
• Also few vendors for components

• Every time a new fiber is made, new components need to be developed
• Limits the turn-around time from new fiber development to its implementation 

in a system
• Need pump combiners and isolators compatible with the fiber

• Ideally, everything needs to be fiber-coupled
• To eliminate free-space coupling
• Free-space coupling into small-core fibers is not practical in real-world 

systems

40
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